Doctoral dissertation: Systems modelling can support the sustainable development of maritime traffic

The examination of MSc Emilia Luoma’s doctoral thesis in environmental sciences was organized at the University of Helsinki on October 28, 2022. Professor Nina Tynkkynen from Åbo Akademi’s Faculty of Social Sciences, Business and Economics acted as the opponent. The research behind the dissertation has been conducted as part of the projects 30MILES and COMPLETE, led by Kotka Maritime Research Centre (Merikotka). Merikotka’s research director, Associate Professor (Docent) Annukka Lehikoinen was the main supervisor of Luoma’s work.

The thesis, “Developing sustainability through systems thinking – Perspectives to maritime traffic” consists of four scientific articles and a summary section. The entity aims to increase the systemic understanding related to sustainability and sustainable development by applying causal network modeling methods. The case study topics through which the subject is approached in the articles are the management of the biofouling on ships and the sustainable development of marinas. In the summary section Luoma concludes on how causal network modeling methods can help identify factors and measures that prevent or promote sustainability and sustainable development.

“Based on the results, I would say that both qualitative and numerical causal network models support the conceptualization and structuring of sustainability issues in a versatile way,” Luoma states and continues: “My statement is that such a systemic review can increase the understanding of who should be involved in the discussion, what information is needed and what aspects should be considered in order to make decisions that promote sustainable development. The visual representation of the models can also promote the participation of stakeholders and open communication”.

At the dissertation event, Opponent Tynkkynen praised Luoma’s cross-disciplinary thesis as containing information useful for planning and policymaking purposes and offering fresh perspectives on the topic of maritime traffic, which is usually considered from a rather technical perspective. Tynkkynen also hoped that corresponding, non-traditional, and cross-disciplinary approaches could be included in the coming update of the national strategy for maritime research in Finland.

The thesis summary can be downloaded from the University of Helsinki’s publication archive Helda.

 

Written by: Annukka Lehikoinen

Research article: a decision analysis model to compare biofouling management strategies

Researchers of the Merikotka-driven COMPLETE and COMPLETE PLUS projects published a scientific article where they present a multi-criteria decision analysis model to compare alternative biofouling management strategies in the Baltic Sea. The article is a joint effort of the KMRC researchers from the groups of the University of Helsinki, South-Eastern Finland University of Applied Science, and the Kotka Maritime Research Association, in collaboration with Finnish Environment Institute (SYKE), Natural Resources Institute Finland (LUKE), Chalmers University of Technology, and University of Klaipeda.

Biofouling management helps to prevent the spread of potentially harmful non-native species but is important also in terms of ships’ fuel consumption and CO2 emissions. The main biofouling management methods in use are regular cleaning of the underwater parts of vessels, and diverse biocidal or non-biocidal hull coatings. The ecological and environmental risks associated with different solutions and their combinations should be acknowledged when selecting case-specifically sustainable management strategies. In addition, the special characteristics of the Baltic Sea, such as the partial ice coverage in winter, restrict the applicability of some solutions in the area.

The researchers developed a model that enables case-specific comparison of the biofouling control strategies in relation to the risk of new non-indigenous species introductions in different parts of the Baltic Sea, the eco-toxicological risk due to biocidal hull coatings, and the carbon dioxide (CO2) emissions that increase along the growing friction caused by the organisms attaching the ship’s hull. In addition, for each analyzed scenario, the model estimates the monetary costs for the shipping company, arising from the fuel consumption and the evaluated control options.

In the article, the researchers demonstrate how, with the careful consideration of the hull fouling management strategy, both money and environment can be saved. Biocidal-free coating combined with regular in-water cleaning, using a device to collect the detached organic material, provides a sustainable alternative. However, the optimal biocidal-free coating type and in-water cleaning interval should be evaluated case-specifically.  In some cases, biocidal coating with less regular in-water cleaning appears to be a justifiable solution but even then, the copper concentration and release rate from the coating should be adjusted to the low-salinity conditions of the Baltic Sea.

The article is published in the journal Science of the total environment and is freely available. It is part of the KMRC-researcher Emilia Luoma’s PhD study she conducts as part of the research group of the University of Helsinki. In her thesis Luoma applies participatory system modeling methods to examine environmental and sustainability issues related to marine traffic in the Baltic Sea.

 

Written by: Emilia Luoma and Annukka Lehikoinen

Article: Well-organized sewage management advances comprehensive sustainability of boating and marinas

A new article from the Kotka Maritime Research Network recently came out in the international science journal Marine Pollution Bulletin. The article is based on data collected during the 30MILES project, that focused on sustainable development of the marina network in the Eastern Gulf of Finland.

While analyzing the answers of queries and interviews, the researchers noticed the aspects most frequently commented by boaters in connection to sustainability of marinas  were the waste management issues – especially those related to boat-sourced sewage management. Recreational boaters in the study area often seemed to face boat-sourced sewage management issues that the port actors were not aware of. A literature review indicated similar issues are faced by boaters in other parts of the world, too.

Since 2005, discharging boat-sourced sewage in the Finnish coastal areas has been banned by law. The contents of the boat-toilet should be stored in sewage holding tanks for later disposal at sewage pump-out stations. In Finland, the pump-out stations are usually located either in natural harbours or built marinas. In natural harbours, floating stations are maintained most often by an environmental association (Keep the Archipelago Tidy Association). Shore stations located in marinas are maintained by marina operators in accordance with the marina municipalities. Boat-sourced sewage is still often dumped in the sea, locally contributing to the eutrophication of the Baltic Sea. The article of the KMRC researchers explains the reasons and suggests improvements. (Photo: Keep the Archipelago Tidy Association, HL-Metal Oy / Erik Saanila)

The researchers conducted an actor-network theory -driven analysis to understand and describe the mechanisms through which boat-sourced sewage management plays a role in sustainable marina development of the study area. The article presents a comprehensive description of one socio-eco-technical system, in which the various identified actors and factors, in interaction with each other, can either advance or hinder the manifestation of sustainable port operation and recreational boating. Sewage pump-out stations installed in the marinas are recognized as core marina services, valued by boaters. At the same time, they serve as so-called governance artefacts, steering the boaters’ environmental behavior in marinas, but also at sea, which simultaneously affects the sustainability of both marina operation and boating.

The results of the article indicate paying special attention to waste management services in marinas is likely to put forward a positive sustainability loop. This virtuous circle produces synergies between objectives of environmental management, local well-being, and economic development. Adequate environmental management preserves the ecosystem services that are part of the tourism product and prevents them from turning into disservices that would likely make visitors to abandon the site and its surroundings in the long run. Waste management connects concerns of both visiting boaters and locals, enabling the first group an environmentally conscious and legal way of action, at the same time sustaining the good environmental state in the home locality of the latter group.

The article provides evidence-based ideas and recommendations for improving the boat-sourced sewage management, as well as the sustainable development of marinas in general.

 

Original article:

Renne Vantola, Emilia Luoma, Tuuli Parviainen and Annukka Lehikoinen (2021). Sustainability manifesting as a multi-material and -sited network effect: How boat-sourced sewage management facilities serve as governance artefacts advancing sustainability in nautical tourism. Marine Pollution Bulletin 173, Part B. (Open access link)

 

Written by: Annukka Lehikoinen